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Chapter 3
Image Enhancement in the Spatial Domain
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- Spatial domain

- refers to the image plane itself, and approaches in this
category are based on direct manipulation of pixels in an
Image

* Frequency domain
- based on modifying the Fourier transform of an image
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As indicated previously, the term spatial domain refers to the ageregate of
pixels composing an image. Spatial domain methods are procedures that op-
erate directly on these pixels. Spatial domain processes will be denoted by the

expression

g(x.y) = T[f(x.y)] (3.1-1)

where f(x, y) 1s the input image, g(x, y) 1s the processed image, and 7 15 an
operator on f, defined over some neighborhood of (x, v).

- The principal approach in defining a neighborhood about a
point (X, y) IS to use a square or rectangular subimage area
centered at (X, y), as Fig. 3.1 shows.
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FIGURE 3.1

Adx3
neighborhood
about a point

(X, ¥y) In an image.
The neighborhood
15 moved from
pixel to pixel in the
image to generate
an output image.
Recall from
Chapter 2 that the
value of a pixel at
location (x;, y,) is
f(Xy.¥y), the value
of the image at that
location.
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The simplest form of T1s when the neighborhood is of size 1 X 1 (that is, a
single pixel). In this case, g depends only on the value of fat (x, v).and T be-
comes a gray-level (also called an intensity or mapping) transformation func-
tion of the form

s =T(r) (3.1-2)

where, for simplicity in notation, r and s are variables denoting, respectively,
the gray level of f(x, ) and g(x, y¥) at any point (x, v).

 contrast stretching - Fig.3-2(a)
+ thresholding - Fig.3-2(b)

| D l E]DL[H]JL]‘D]J D:!JDHDLU 1101022301 0000 §

LI LT HERBIRED AN LAOMLYL.OLAMNT O

QDLIDLD;.

iy MINGAG TN FE S RER

|

fil U H




| mage

ideo
Processing
Laboratory

5 =T(r) 5= T(r) ab

___________________ FIGURE 3.2 Gray-
level
transformation
functions for
contrast
enhancement.

— T(r)
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- Masks (also referred to as filters,kernels, templates, or
windows)

+ Use a function of the values of f in a predefined neighborhood of (X, y)
to determine the value of g at (X, y).

- Basically, a mask is a small (say, 3 x 3) 2-D array.
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* Three basic types of functions used frequently for image
enhancement
* Fig. 3.3
- Linear (negative and identity transformations)
* logarithmic (log and inverse-log transformations)
+ power-law (nth power and nth root transformations).




FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.
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- Image Negatives

s=L-1-r

» Fig. 3.4.
* Log Transformations
s=clog(1+r)

3 lriek sy
- Power-Law Transformations
s=cr’

* Plots of s versus r for various values of r are shown in Fig. 3.6.
+ Cathode ray tube (CRT) devices example in Fig. 3.7.
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FIGURE 3.4
(a) Original
digital
mammogram.
(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)
-
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L-1
Negative ng
ay
rth root
EFNC o .
é nih power
ol -
L4 -
Value in the range 0 to 1.5x10° A
Tdentity > e
a L4 Lf2 LM L-1

Input gray level, r

Hesh

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation
given in

Eq. (3.2-2) with
c = 1.
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FIGURE 3.6 Plots  oratory
of the equation
s = cr” for
various values of
y({c =1 all
cases).
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FIGURE 3.7

(a) Linear-wedge
grav-scale image.
(b) Response of
monitor to linear
wedge.

(¢) Gamma-
corrected wedge.
(d) Output of
monitor.

s=T(r)=cr’

it L)

YAV

v=1.81t02.5

O anior 5

-vs

v=1/ 2.5

Image as viewed on monitor

Image as viewed on monitor
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FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine (the region
of the fracture is
enclosed by the
circle).

(b} d) Results of
applying the
transformation

in Eq. (3-5)

with c = 1 and
v= 0.6, 04, and
0.3, respectively.
{(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)
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FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

y = 3.0.4.0,and
3.0, respectivelv.
(Original image
for this example
courtesy of
NASA.)
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* Piecewise-Linear Transformation Functions
- Contrast stretching
* Figure 3.10
- Gray-level slicing
« Figure 3.11
* Bit-plane slicing
* Figure 3.12
* Figure 3.13

* Figure 3.14
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Ouput gray level, s

L-1 |
(r2. 52)
3L /4
L2 T(r)
L/4
(F1. 51}
0 | | |
0 LA L2 3L/4 L -1

Input gray level.r

.
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Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady,
Research Schoaol
of Biological
Sciences,
Australian
National
University,
Canberra,
Austraha.)
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FIGURE 3.11 (a) This L_aboratory

transformation

highlights intensity

range [A, B] and
reduces all other
intensities to a lower
level. (b) This
transformation
highlights range

[A, B] and preserves
all other intensity
levels.

abec

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a), with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the

_blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of
Michigan Medical School.)
L]
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v’ Bit-plane slicing
One 8-bit byte Bit-olane 7 FIGURE 3.12
-_' (r:luf:l :«'I::nit'ic:ml) I]ll—plone . i
- representation of
/ an 8-bit image.
Pl
|
:_/// : Bit-plane 0
] (least significant)
A1
|
|
170 =1x27 +0x2° +1x 27 +0x2* +1x2° +0x 2% +1x 2" + 0% 2°
255 =1x2" +1x2° +1x 2> +1x2* +1x 2 +1x 2% +1x 2" +1x2°

. ® FIGURE 3.13 An B-bil fractal image. (A fractal is an image senerated from mathematical ’
0 25 5 expressions). (Courlesy of Ms. Melissa [ Binde, Swarthmore College, swarlhmore, PAL)
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T FIGURE 3.14 The eight bit planes of the image in Fig. 3.13. The number at the bottom.
right of each image identifies the bit plane.

HEF
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The histogram of a digital image with gray levels in the range [0, L-1] is a
discrete function h(r,)=n,, where r, is the kth gray level and n, is the number
of pixels in the image having gray level r,.

Histograms are the basis for numerous spatial domain processing
techniques.

Histogram manipulation can be used effectively for image
enhancement.

histograms corresponding to images in Fig. 3-15.
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A brightness histogram.
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1 ) | I 1 I | | 1 1 I | | 1 l I |
| Histogram of || Histogram of 1| Histogram of || Histogram of .|
dark image light image low-contrast image high-contrast image
| I U Mr L |
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FIGURE 3.16 Four image types and their corresponding histograms. (a) dark; (b) hight; (c) low contrast; (d) high con-
trast. The horizontal axis of the histograms are values of r, and the vertical axis are values of pir, ).
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+ Histogram Equalization

- The aim - image with equally distributed brightness levels over
the whole brightness scale

Hip) Glg)
<§>
ﬁ
£ o

Histogram equalization.
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Histogram Equalization B

e [oundation

Let r represent the normalized gray level of the pixels in the
1image to be enhanced, with

0=r =1
(black) (white)
Transformations of the form
s =1(r)
will produce a level s for every pixel value r 1n the original
image. It 1s assumed that

(a) T(r) 1s single-valued and monotonically increasing in
the interval 0 = r = 1,

= = el
,11.01.00¢
noLnnn.nnlnin o
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(6)0 =Tk =1 for 0 =r <]

The inverse transformation
r=T1(s)

1s also assumed to satisfy
_ cond. (a) and (b)

sk = T(ry)

!
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FIGURE 3.17 ‘ !
{a) Monotonic

increasing function, L-1
showing how Single
multiple '-':Elluilzs can value, 55 L
map to a single

valEc. (b) Stﬁ'ﬂly TN~
monotonic increas- Single
ing function. This is value, s

q
a one-to-one map-
—— I
1 1 1

.

e

Multiple Single
values  wvalue

ping, both ways.

1 1
a 250 a

|

Figure 4.4 Histogram equalization: Original and equalized histograms.

1
250
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1
L-1
|l wr - 5

0 L-1 ] L-1

From probability theory, the p.d.f. of the transformed gray
levels 1s g1ven by

p,(s) = [p (V)d—} (1)
) S =T (s) ]
Now, consider the tragsformatlon function
S:T(r)zjopr(w)dw 0<r<l 2)

ds
=p.(r)
Subst. 1nt0 Eq. (1)
p.(s)= [p(r) } =[] . =1 0=s<l
pr(r) e T_l(s) e
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From probability theory, the p.d.f. of the transformed gray
levels 1s given by

p.(1)= {nk

n

—} 0<r <land k=0,1,---,L-1

The discrete form of Eq (2) 1s g1iven by

k

s, =1(1) =),

_J
JOH

ZP;»(?‘) 0<rn<land k=0,1,---,L -1

The mverse transform 1s denoted by

rn=T"(,) 0<s, <1
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Exa m p I e Frocessing
pixels pixels it
35
i L 5 - "
25 = 25 >
20 20 =
15 M0 10 10 10 15 10
10 z 10
2 | g o W 0 I 0 E
0.00 0.14 0.29 0.43 057 0.71 0.86 1.00 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00
Gray- 0 1 2 3 4 5 6 7
level
r 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00
pixels 10 10 20 5 10 30 10 5
pr 0.1 0.1 0.2 0.05 0.1 0.3 0.1 0.05 |
sk 0.1 0.2 0.4 0.45 0.55 0.85 0.95 1
r' 0.14 0.14 0.43 0.43 0.57 0.86 1.00 1.00
e M I P LaD., CoIE@ Tungnal University. 410
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FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right
. COlumn: histograms of the images in the center column (compare with the histograms in Fig. 3.16).
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Direct Histogram Specification B

Suppose that a given 1mmage 1s first histogram equalized

e s=T(r)= J:pr(w)dw (1)

[f the desired 1mage were available, 1ts levels could also be
equalized by using the transformation function

v=G(2)= | p.(w)d 2)

The inverse process, z = G (v), would then yield the
desired levels back.

’

T I
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The procedure can be summarized as follows:

(1) Equalize the levels of the original 1mage using £q. (1),

(2) Specity the desired density function and obtain the
transformation G(z) using £q. (2),

3) Apply the inverse transformation function, z = G/ (s) ,
to the levels obtained 1n step (1).
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FIGURE 3.21
Transformation
functions for histo-
oram equalization.
Transformations (1)
through (4) were
obtained using

Eq. (3-15) and the
histograms of the
images on the left
column of Fig. 3.20.
Mapping of one
intensity value r, in
image 1 to its cor-
responding value s,
1s shown.

5

_
WS
bd

k':-':

=y
=

=

5
Intensity values of histogram-equalized images

—

5

0 T 64 128 192 255

r
Intensity values of original images
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FIGURE 3.19

{a) Graphical
interpretation of
mapping from r,
to s, via T'(r).

(b) Mapping of z,
to its
corresponding
value v, via G(z).
(c) Inverse
mapping from sy
toits
corresponding
value of z,.
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FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's Mars Global =7
Surveyor. (b) Histogram. {Original image courtesy of NASA.)
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a b
B

FIGURE 3.21

(a) Transformation
function for
histogram
equalization.

(b) Histogram-
equalized image
(note the washed-
oul appearance ).
(c) Histogram

of (b).




FIGURE 3.22
{a) Specified
histogram.

(b) Curve (1) is

from Eq. (3.3-14),

using the
histogram in (a):
curve (2) was
obtained using
the iterative
procedure in
Eq. (3.3-17).
{c) Enhanced
image using
mappings from
curve (2).

{d) Histogram
of {c).
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- Local Enhancement

- define a square or rectangular neighborhood and move the
center of this area from pixel to pixel.

 In Fig. 3.23, a result of local processing using relatively small
neighborhoods.

« Example 3.6 pp.105
* Eqg. 3.3-21
- Eq. 3.3-22
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FIGURE 3.26

(2) Original
image. (b} Result
of global
histogram
equalization.

(c) Result of local
histogram
equalization.

ab

FIGURE 3.27

{a) Original
image. (b) Result
of local
enhancement
based on local
histogram
statistics.
Compare (b) with
Fig. 3.26(c).

) @ 5 5 g LR 5 . o . . 3 LR .
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FIGURE 3.24 SEM
image of a
tungsten filament
and support,
magnified
approximately
1303 (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).
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FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (¢) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.

| 7P lzab:, CSIE@ Tunghai University.



|mage

Processing
Laboratory

FIGURE 3.26
Enhanced SEM
image. Compare
with Fig. 3.24. Note
in particular the
enhanced area on
the right side of
the image.




3.4 Enhancement Using Arithmetic/Logic Operations Vi
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Arithmetic/logic operations involving images are performed on a
pixel-by-pixel basis between two or more images.

The AND and OR operations are used for masking; that is, for
selecting subimages in an image, as illustrated in Fig. 3.27.

Masking sometimes is referred to as region of interest (ROI)
processing.

Image Subtraction
The difference between two images f(x, y) and h(x, y), expressed

as
a(x, y) = f(x, ¥) - h(x, y)
Figure 3.28

l T O
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FIGURE 3.27

(a) Original
image. (b) AND
image mask.

(¢) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e) OR
image mask.

(f) Result of
operation OR on
images (d) and
(e).
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FIGURE 3.28

(a) Original
fractal image.

(b) Result of
setting the four
lower-order bit
planes Lo zero.
(c) Difference
between (a) and
(b).

(d) Histogram-
equalized
difference image.
(Original image
courtesy of Ms.
Melissa D. Binde.,
Swarthmore
College.
Swarthmore, PA).

| 7P lzab:, CSIE@ Tunghai University.
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- EXAMPLE 3.7
- Use of image subtraction in mask mode radiography.
o FEIGURIERE) 25
* Image Averaging
- Consider a noisy image g(x, y) formed by the addition of noise
n(x, y) to an original image f(x, y);

a(x, y) =f(x, y) + n(x, y)

- EXAMPLE 3.8
- Noise reduction by image averaging.
* FIGURE 3.30 and FIGURE 3.31
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a b

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.

g(x.y)=f(x,y)=h(x,)

l
E | 7P Lzab:, CSIE@TunghaiUniversity:
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g(x,y)=f(x,y)+n(x,y)
Averaging M noisy images .
_ 1 <
X,y)=— (X,
g(x,») M;g( »)

It follows

E{g(x, )} = f(x.»)

and
1
2 _ 2
Oz = A )
or
B 1
Og(xy) = \/ﬁ O i)
ab
cd

=]
FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314 (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)—{f) Results of av-

eraging K = 8 16,64, and 128 noisy images. ( Original image courtesy of NASA.)

. | 7P Lzab:, CSIE@TunghaiUniversity:
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FIGURE 3.31

{a) From top to
bottom:
Difference images
between
Fig.3.30(a) and
the four images in
Figs 3.30(c)
through (f),
respectively.

ib) Corresponding
histograms.
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3.5 Basics of Spatial Filtering

Processing
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Some neighborhood operations work with the values of the image
pixels in the neighborhood and the corresponding values of a
subimage that has the same dimensions as the neighborhood.

The subimage is called a filter,mask, kernel, template, or window.

The values in a filter subimage are referred to as coefficients, rather
than pixels.

The mechanics of spatial filtering are illustrated in Fig. 3.32.

l | O
AM' | 7P Lzab:, CSIE@TunghaiUniversity:
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FIGURE 3.28 | | | —¥
The mechanics —

of linear spatial Kernel origin —, |

filtering TS

usinga 3= 3
kernel. The pixels *’/ /
are shown as /] Magnified view showing filter kernel

squares Lo sim- ﬁl [Filter kernel| ] coefficients and corresponding pixels

plify the graph- K — i image
ics. Note that 1] in the

the origin of the
image is at the t . _/
I:;ta,gl:rut the crnrig?n’IJ Image pixels

of the kernel is at
its center. Placing
the origin at the
center of spatially
symmetric kernels I
simplifies writing mage f
expressions for 1

wi—1, -1 wi—1,0) | wi—1,1)

linear filtering. win,-1) | wio,0) | wio) | Filter kernel, w(s,r)

wi .0

N

flxr—Ly-1) fir-1% fix-ly+1) \—Keme]meﬁcients

wil. 1)

wil,—1)

fix+1,v-1)

fix+ 1%

N

Pixel values under kernel L
when it is centered on (x, y)

fr+ly+1)

DLLDLD



FIGURE 3.29
Mustration of 1-Dy
correlation and
convolution of a
kernel, w, with a
function f
consisting of a
discrete unit
impulse. Note that
correlation and
convolution are
functions of the
variable x, which
acts to displace
one function with
respect to the
other. For the
extended
correlation and
convolution
results, the
starting
configuration
places the right-
most element of
the kernel to be
coincident with
the origin of f.
Additional
padding must be
used.
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e Origin f w rotated 180°
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* For the 3x3 mask, the result (or response), R, of linear filtering
with the filter mask at a point (X, y) in the image is

R=w(-1,-Df(x-1,y-1)+w(-1,0)f(x-1,y) + ..+
w(0, O)f(x,y) + p +w(l, O)f(x +1,y) +w(l, Df(x + 1,y + 1)

* For a mask of size m x n (on masks of odd sizes)
+ assume that m=2a+1 and n=2b+1
- where a and b are nonnegative integers.
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+ linear filtering of an image f of size M*N
- with a filter mask of size m x n is given by the expression:

iw{:ﬂ Of(x + 5.y + 1) (3.5-1)

- .!‘;ﬂ!'
a=(m-1)/2 and b=(n-1)/2
* For the 3 x 3 general mask shown in Fig. 3.33 the response at
any point (x, y) in the image is given by

R=wzg +uwi + ... 03 (3.5-3)

9
= 2{ W, 7.
i=

I:] I:I ].I H ]J ]4 ].I I:l 1| il D l' D“‘ﬂlﬂ {L01033300.0000 44
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FIGURE 3.33
Another _ w, w, ws
representation of
a general 3 X 3
spatial filter mask.
. Wy Wy Wy
Wy Wy Wy
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* Smoothing Linear Filters

 Averaging filters — average of the pixels contained in the
neighborhood of the filter mask.

R - "E!'-‘

1
9

M-

* Eq. 3.6-1
» Figure 3.34 shows two 3 x 3 smoothing filters.

1| | D l DDL[H]JL]‘D]J D:!Jnnm.u 4102031182 0000 f

5 [\
fil JHITHHTLIUW LT LT HERBIRED Y PRI LI LT

QDLIDLD;.
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2:-h

FIGURE 3.34 Two
3 X 3 smoothing
x| 1 1 1| Lx| 2 4 2 (averaging) filter
masks. The
constant multipli
1 1 1 1 2 1 er in front of each
mask 1s equal to
the sum of the
values of its
coeflicients, as 1s
required to
compute an
average.

N | —
—
=
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- EXAMPLE 3.9
* Image smoothing with masks of various sizes.
+ The effects of smoothing as a function of filter size are illustrated
in Fig. 3.35.

- As mentioned earlier, an important application of spatial averaging is
to blur an image for the purpose getting a gross representation of
objects of interest.

* Figure 3.36
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FIGURE 3.33

(a) Test pattern of
size 1024 = 1024
pixels.

(b)-(d) Results of
lowpass filtering
with box kernels
of sizes 3x 3,

11 =11,

and 21 x 21,
respectively.
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FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(¢) Result of thresholding (b). (Original image courtesy of NASA.)
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ab G(s, 1)
FIGURE 3.35 T
{a) Sampling a 1
Gaussian function
to obtain a discrete
Gaussian kernel. | 0.3679 | 06065 | 0.3679
The values shown T :

are for K =1 and
o = 1. (b) Resulting
3 3 kernel [this

is the same as Fig.
3.31(b)].

0.6065 | 1.0000 | 0.6065

0.3679 | 0.6065 | 0.3679
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abec

FIGURE 3.36 (a)A test pattern of size 1024 1024, (b) Result of lowpass filtering the pattern with a Gaussian kernel
of size 21 » 21, with standard deviations o = 3.3. (c) Result of using a kernel of size 43 x 43, with & = 7. This result
is comparable to Fig. 3.33(d). We used K =1 in all cases.

- » N y ~

Jd d\h\d (] a d d..nd (‘ a

— ‘
abec
FIGURE 3.37 (a) Result of filtering Fig. 3.36(a) using a Gaussian kernels of size 43 = 43, with & = 7. (b) Result of using
e a kernel of 85 x 85, with the same value of . (c) Difference image.

1
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FIGURE 3.41 (a) A 2566 = 2758 Hubble Telescope image of the Hickson Compact Group. (b) Result of lowpass filter-
ing with a Gaussian kernel. (c) Result of thresholding the filtered image (intensities were scaled to the range [0, 1]).
The Hickson Compact Group contains dwarf galaxies that have come together, setting off thousands of new star
clusters. (Original image courtesy of NASA.)
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- Order-Statistics Filters
* median filter

- Median filters are particularly effective in the presence of
Impulse noise, also called salt-and-pepper noise.

- EXAMPLE 3.10
+ Use of median filtering for noise reduction.
* Figure 3.37

I:] I:I ].I H ]J ]4 ].I I:l 1| il D l' D“‘ﬂlﬂ {L01033300.0000 44
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R pE

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3 averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, Inc.)
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+ Some detail sharpening filters that are based on first- and second-
order derivatives, respectively.

« The derivatives of a digital function are defined in terms of
differences.

g_‘;: f(x+1)— f(x)

g_i (1) F(x—1)-2f(x)

- fundamental similarities and differences between first- and
second-order derivatives, shown in Fig. 3.38.
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FIGURE 3.38
(a) A simple
image. (b) 1-D
horizontal gray-
level profile along
the center of the
image and
including the
isolated noise
point.
(¢) Simplified
profile (the points
are joined by
dashed lines to
simplify
interpretation).
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Second Derivative —1 0 0 0 0

Bl

| 7P lzab:, CSIE@ Tunghai University.
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FIGURE 3.44

(a) A section of a
horizontal scan
line from an
image, showing
ramp and step
edges, as well as
constant
sgrments.
(b)Values of the
scan line and its
derivatives.

{c) Plot of the
derivatives, show-
INg a ZETO CTOSS-
ing. In (a) and {c)
points were joined
by dashed lines as
a visual aid.
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Comparison between first- and second-order derivatives,
First-order derivatives generally produce thicker edges in an image.

Second-order derivatives have a stronger response to fine detail,
such as thin lines and isolated points.

First-order derivatives generally have a stronger response to a
gray-level step.

Second-order derivatives produce a double response at step
changes in gray level.

We also note of second-order derivatives that, for similar changes in
gray-level values in an image, their response is stronger to a line than to
a step, and to a point than to a line.

l O
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+ Laplacian
- use of Second Derivatives for Enhancement
o ot
'{fif = —f + —f (3.7-1)
x* ﬂy

» using the mask shown in Fig. 3.39.
 EqQ. 3.7-5
- EXAMPLE 3.11

* Figure 3.40
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ab
0 1 0 1 1 1 cd
FIGURE 3.39
(a) Filter mask
1 —4 1 1 ) 1 used to

implement the
digital Laplacian,
as defined in

0 1 0 1 1 1 Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
0 -1 0 -1 -1 -1 equation that
includes the
diagonal
neighbors. (¢) and
-1 4 -1 -1 8 -1 (d) Two other
implementations
of the Laplacian.
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FIGURE 3.40

(a) Image of the
North Pole of the
moon.

(b) Laplacian-
filtered image.
(¢) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)
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- Composite Laplacian mask

glx.y) = fla.y) — [flx + Ly) + flx — 1y)
+flxy 1)+ flx.y — D]+ 4f(x.y)
= 5f(xy) — [flx + Ly) + flx = Ly)
+flay + 1)+ flxoy — 1]

- EXAMPLE 3.12
- Fig. 3.41

(3.7-6)

l UDL'H]IL]‘DL I DLDLLDLD 4101031383 0000
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-1 5 -1
-1 -1 -1
0 -1 0
-1 9 -1
-1 -1 -1

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning |
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),

respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)
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» Unsharp masking and high-boost filtering
* unsharp masking

flx.9) =[x y) = f(x.9) (3.7-7)

* high-boost filtering
fin(x. ¥) = Af(x.y) — f(x. ) (3.7-8)

* Fig. 3.42

- EXAMPLE 3.13
+ Figure 3.43 shows such an application
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ab

0 -1 -1 —1 FIGURE 3.42 The
high-boost filtering
technique can be
1 A =4 1 1 A+S 4 implemented with
either one of these
masks, with A = 1.
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FIGURE 3.43

(a) Same as

Fig. 3.41(c). but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A= 0.

(¢) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A = 1.(d) Same

as (¢), but using
A=1.7.

)cessing
)oratory
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Blurred signal

Unsharp mask

Sharpened signal

DIP-XE | DIP-XE BIRP-XE
DIP-XE | DIP-XE

abec
de

FIGURE 3.49 (a) Original image of size 600 = 259 pixels. (b) Image blurred using a 31 = 31 Gaussian lowpass filter with
o = 3. {c) Mask. (d) Result of unsharp masking using Eq. (3-56) with &k = 1. (e) Result of highboost filtering with
k=45
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+ Gradient
« Use of First Derivatives for Enhancement
- Eqg. 3.7-12 & eq. 3.7-13
* use the notation in Fig. 3.44.

- EXAMPLE 3.14 - Fig. 3.45.
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FIGURE 3.44

A3 X 3region of
an image (the z's
are gray-level
ralues) and masks
used to compute
the gradient at
point labeled zs.
All masks
coefficients sum
LO Zero, as
expected of a
derivalive
operator.
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a b
FIGURE 3.45

Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o'clock).

(b) Sobel
eradient.
(Original image
courtesy of
Mr. Pete Sites,
Perceptics
Corporation.)

| 7P lzab:, CSIE@ Tunghai University.
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FIGURE 3.57 Lowpass filter Highpass filter

Transfer functions 1 1
of ideal 1-D filters
in the frequency

domain (u denotes Passband Stopband Stopband Passband
frequency). - i
(a) Lowpass filter. ™ Ly, -
i(b) Highpass filter.
(c) Bandreject filter. A
id) Bandpass filter.

(As before, we Bandreject filter Bandpass filter
show only positive Stopband rPﬂssband

frequencies for | B
simplicity.) 1 1
Passband Passband Stopband Stopband

i e ! U

|
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* Frequently,a given enhancement task will require application of
several complementary enhancement techniques in order to achieve

an acceptable result.

- Examples:
* nuclear whole body bone scan - Fig. 3.46

,,,,,,, J"
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a b

B

FIGURE 3.46

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (¢) Sharpened
image obtained
by adding (a) and
(b, (d) Sobel of
(a).

—
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FIGURE 3.46
(Continued)

(e) Sobel image
smoothed with a
5 X 5averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a
power-law
transformation to
(g). Compare (g)
and (h) with (a).
(Original image e
courtesy of G.E. il
Medical Systems.) I
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