Chapter 4
Image Enhancement in the
Freguency Domain




4.1 Background

« 1807, French math. Fourier

— Any function that periodically repeats itself can be
expressed as the sum of sines and/or cosines of
different frequencies, each multiplied by a different
coefficient (Fourier series)

« 2-D transform can be applied to image
enhancement, restoration, encoding, and

description.

* Fourier transform (FT)
— Fourier’'s idea —fig. 4.1.
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4.2 Introduction to the Fourier transform

©) Let f(x) be a continuous function of a real variable x. The Fourier
transtorm of f(x), denoted as 3{f(x)}, 1s defined by

L)) = Flu)y =15 F(x)expl— Rxux)dx
where j=+f—1
© Given F(u), f(x) can be obtained by using inverse Fourier transform
T’i_] PR =1 (x)= J-f";.: Flwyespl 2muxdu

© f(x) 1s real, F(u) is complex



4.2 Introduction to the Fourier transform

© F(u) = R(u) +jl(u)
= |F(u)| I AW

© guy = tun']{:[u]]—‘ v phase angle =
u

/2

© |F(u)] = ‘Rziu) + 12 (u) *it Fourier spectrum of f(x) &

© P(u) = |F|[u)|2 ' power spectrum of f{x) s

© u is called the frequency variable

© Fig. 3.1 shows a simple function and its Fourier spectrum

© Let f(x.y) be a continuous function of two real variables x and y.
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F(u)= j f(x) exp[—jZ;rux] dx A
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4.2 Introduction to the Fourier transform

v Example:
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4.2 Introduction to the Fourier transform

2-D Fourier transform of f(x,y), denoted as 3J{fix,v)}, 1s
defined by

MM v =Fluyy)= J-f"x L F(x.v)exp[— 2a(ux +vy)dydy

© Given F(u,v), f(x,y) can be obtained by using inverse Fourier
transform

5 CF(uv) =1y = 15015 Fluvyexpl 2a(ux + ) dudy



4.2 Introduction to the Fourier transform

O F(uv) = Riuy) +jl(u,y)

= [F(u,v)| eI ALY)
O dlu,v) = tan"] {u,Y) it phase angle *i
R(u.v)

1/2

O |F(u,v)| = |R2(_u,v] f 12 (u,v) % Fourier spectrum of f(x,y)

© P(“a‘f’):|F(.“aV}|2 »% power spectrum of f(x,v) #i

© v and v are called the frequency variables

Example 4.1. Fourier spectra of two simple 1-D functions. (Fig. 4.2)
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FIGURE 4.2 (a) A
discrete function
of M points, and
(b) 1ts Fourier
spectrum. {(¢) A
discrete function
with twice the
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and (d) its Fourier
spectrum.
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(a) (b)
A 2-D function The Fourier spectrum

The spectrum displayed
as an intensity function
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4.2 Introduction to the Fourier transform

* The discrete Fourier transform (DFT)

— For 1-D transform: Let the sequence{f(0),f(1),...,f(N-1)} be n
real points, the discrete Fourier transform pair is given by

N-1
Fu) % > f(x)exp|—j2mux/ N]|
for u=0,1.2,....N-1. and
N-1
f(xy= > F(uyexp| j2mux/ N]
1=0

for x=0,1,2,....N-1
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l 3 DFT  Exp. I
F(0) =Z f(x)exp[0]

f@)

=.[ fO)+(1)+f(2)+(3)]
=(2+3+4+4)=13
F(1) =) fix)exp[-i27x/4]

=" +3¢ 2 +4e " 14e 2
=).3j-4+4]

F(2)= Z f(x)exp [-j4:frx/4]
=2e" +3¢ /" +4e 7T 47
= 2-3+4-4=-1

F(3)=-2-

4+

3T

2¢

S
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4.2 Introduction to the Fourier transform

— For 2-D transform: in the two-variable case the
discrete Fourier transform pair is

N-IN-1
F(u,v):% Y% Sy el 2t )/ V)
N x=0y=

foru,v=20,12.....N-1, and

: | N-IN-]
fx,v)y==—% % Fluyv)exp| j2mux+vy)/ N]
N 4=0v=0

for x,y = 0,1,....N-1.
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4.2 Introduction to the Fourier transform

(1) A continuous function f(x,y) 1s discretized into a sequence

(X0 2p)s [xg + A%, Yg) LS (%) + Ax, vy +Ap),..., II'[.TU+|.:L?‘— | L\.L_\'U+|.-"'+"—l|ﬂ._\'}‘.

(2) Detine
g(x,v)=f(x, +xAx,y, + vAy) x=1..M-1, y=1I..,N-I

(3) The discrete Fourier transform G(u,v) of g(x,y) satisties

]
MAx M ﬂj !

Example 4.2. Centered spectrum of a simple 2-D functions. (Fig. 4.3)

G(u,v) = FluAu,vAv) and Au=

Example 4.3. Fourier spectrum (Fig. 4.4)
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ab

FIGURE 4.3

(a) Image of a
20 x40 white
rectangle on a
black background
of size 512 X 512
pixels

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with
Fig. 4.2.

Y —
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b

FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. J.
M. Hudak.
Brockhouse
[nstitute for
Materials
Research,
McMaster
University,
Hamilton,
Ontario, Canada.)
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’ ) Filtering in the Frequency Domain

Filter
function
Hiwv)

[nverse
Fourier
transform

Fourier
transform

flxy] 2lx.¥)
Lnput Enhanced
image mage

FIGURE 4.5 Basicsteps for filtering in the frequency domain.
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FIGURE 4.6
Result of filtering
the image in

Fig. 4.4(a) with a
notch filter that
set to O the
F(0,0) term in
the Fourier
transform.
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Relation between average value of a function and
1ts Fourier transform:

fx,p) = =D ZZ]‘ (x,¥)

N-1N-1
F@u,v)= ITZZ e, WS WS
i?\‘/ x=0 y=0
= f(x, }’)— F(U 0)

N
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D
Connection between spatial and
frequency filters

 Convolution theorem

f(x,y)*h(x,y)< F(u,v)H(u,v)
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Image origin FIGURE 3.32 The
X mechanics of
' spatial filtering.
The magnified
drawing shows a
3 » 3mask and
the image section
directly under it
the image section
is shown
displaced out
from under the
mask for ease of
readability.

Image f{x, v)

ani, ]

wrfl.—1]

flx-ly-1, Fa=Ly+ 1 pask coefficients, showing

coordinate arrangement

mask coefficients

X (Product) —— output

Pixels of imaga
section under mask

underlying neighborhood
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Convolution theorem

f(x,y)*h(x,y)< F(u,v)H(u,v)

Fo- multiplication.. H Frequency
K t . domain
Fourier Fourier
transform transform
v v
Time
f v h domain

> convolution ~
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. Convolution Theorem

f(x *hxy@FHv

Lowpass Highpass ‘

Hin) H i)
4 1

Frequency

Spatial
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ab
cd

FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4(a).
ic) A two-dimensional highpass filter function. {d) Result of highpass filtering the image in Fig. 4.4{a).
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FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with
Fig. 4.4(a).
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FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

(d) Corresponding
highpass spatial
filter. The masks
shown are used in
Chapter 3 for
lowpass and
highpass filtering.
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4.3 Smoothing Frequency-Domain Filters

 |deal lowpass filters (ILPF)
— Fig. 4.10

— Example 4.4. Image power as a function of distance
from the origin of the DFT. (Fig. 4.11) (Fig. 4.12)

33



Ideal lowpass filters

Hiu, v H (e, v)
T | |
”"_-' =t 1
|
Cutoff frequency
.Y
- = e .
u v - D, : D{1,v)

abc

FIGURE 4.10 (a} Perspective plot of an deal lowpass filter transfer function. (b} Filter displaved as an

imege. (¢) Filler radial eross section.
S4



Ideal lowpass filters

M-1N-

|_I.

Total image power : P. P(u,v)

u=0 v=0

E 1 d ZZP(H.V}
NCl1OSEC OWErI | ¢=100] — .
P 3 92 0% 94 6%

@
(Y X :
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ahb

FIGURE 4.11 (a) Animage of size 500 x 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which cnclose 92.0,
U4.6, Yo 4, UK.0, and D955 of the image power, respectively.
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FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
frequencies set at radn values of 5,

. 30, 80, and 230, as shown in Fig. 4.11(b). The

.and 0,59 of the total. respectively.



®. Effects of ideal low-pass filtering

e

 Blurring and ringing ILPF:
| | spatial

ILPF: Freq.

blurring

F-1

ringing



At TS

¢ Effects of ideal low-pass filtering (cont.)

spatial

impulse



4.3 Smoothing Frequency-Domain Filters

« Butterworth lowpass filters (BLPF)
— Example 4.5. (Fig. 4.15) (Fig. 4.16)

« Gussian lowpass filters (GLPFs)
— Example 4.6. (Fig. 4.17) (Fig. 4.18) (Fig. 4.19)

« Additional Examples of Lowpass Filtering
— Fig. 4.20
— Fig. 4.21
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Butterworth lowpass filters of order #

1

1+ [D (u,}v)/[)ﬂ]

H(u,v)=

2n

Hiu,v)
fINh)
T
Iif-.
D, 1)
LS _ .\\‘ 1 -'.
abe Cutotf frequency

FIGURE 4.14 (o) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders | through 4.
40
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a b FIGURE 4.15 (a) Original image. (b)—([) Results of filtering with BLPEFs of order 2,
¢ d  with cutoff frequencies at radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11{b).

g I  Compare with Fig. 4.12.
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| T

e ok e o)

FIGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1, 2. 5, and 20, and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 3). Note that ringing increases
as a function of filter order.
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FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b Filter displaved as an image. (c) Filter
radial cross sections for various values of D,,.
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FIGURE 4.18 (a) Orriginal image. (byj—(f) Results of filtering with Gaussian lowpass  a b
filters with cutolf frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in ¢ d 44
Fig 411(h). Compare with Figs. 4.12 and 4.15. e f




Character recognition

ab

FIGURE 4.19

(a) Sample text of
poar resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using 00"
as 1900 rather than the yEIr

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

e &

—[ea
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abc

FIGURE 4.20 (a) Original image (1028 X 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with Dy = 80. Note reduction in skin fine lines in the magnified sections
of (b)and (c).



]

FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D, = 30. {¢) Result
of using a GLPF with Dy = 10. (Original image courtesy of NOAA.)
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FIGURE 4.22 Top row: Perspective plot, image representation, and cross scction of a typical ideal highpass
filtar. Middle and bottom rows The same sequence for tvpical Butterworth and Gaussian highpass filters.
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4.4 Sharpening Frequency-Domain Filters

« Highpass Filtering
* Fig. 4.22
* Fig. 4.23

— Ideal highpass filters
* Fig. 4.24

— Butterworth highpass filters
* Fig. 4.25

— Gaussian highpass filters
* Fig. 4.26
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FIGURE 4.23 Spatial representations of typical (a) ideal, (b) Butterworth, and (c¢) Gaussian frequency
domain highpass filters, and corresponding grav-level profiles.
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FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11{a) with D,

6 >
ee A

azaaaaaadd

respectively. Problems with ringing are quite evident in (a) and (b).

Huv)=

15, 30, and RO,

\‘[1 if D{u.v)< D,

[0 ifD(u,v)>D,

ILPF
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Butterworth highpass filters

1 _ [D{H._*-']/DDTH _ 1 .nmE B
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abc

FIGURE 4.25 Eesults of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with Dy, = 15,
3 and B0, respectively. These resalts are much smoother than those abtamed with an [LIPF,
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Gaussian highpass filters

Jai (ZI,V) _1— e—Dz(u.v)/zDo2 oo a .
(ITTTI

aaaaaaad

abc

FIGURE 4.26 Results of higshpass filtering the image of Fig, 4.11(a) using a GHPF of order 2 with D, = 15.
30, and 80, respectively. Compare with Figs. 4.24 and 4.25.
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4.4 Sharpening Frequency-Domain Filters

* The Laplacian in the frequency domain
— Fig. 4.27
— Example 4.7: Laplacian (Fig. 4.28)

« Unsharp masking, High-boost filtering, and High-
frequency emphasis filtering

— Example 4.8: (Fig. 4.29)
— Example 4.9: (Fig. 4.30)
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« Spatial-domain Laplacian
o°f 0O°f

2
\% :8x2+8y2

 Fourier transform

S{énfgx)}=(1u)”F(u)
OX

2 2
~ O f(x,y)+8 f(Xx,y)
OX° oy”°

—(u? +v2)‘F(u,v)

}: (ju)’F(u,v)+(jv)°F(u,v)
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Input

() ; HuY)
Laplacian ?
-(ur+v?)
02f o2 f
2¢ _
Vot = W, + o - > -(u2+Vv2)F(u,v)

The Laplacian filter in the frequency domain is
H(u,v) = -(u?+v?)
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f(xp)=1 (%)~ (%)
fhp ('x, ‘) == f(x.. ,1-’) = flp (\’ _v)

H,, (2,v) =1-H, (2,v)

o (%)= Af (x.7) = fp (x.7)

T (%.) (A—1)f(x.y)+f(.\‘.y)—j]p(x,y)

(4-1)f (x.y)+ fip (x.)

Hy (u,v)=(4-1) +H,, (u,v)




H, (u,v)=a+bH, (u,v)

ab

c d

FIGURE 4.30

(a) A chest X-rav
image. (b) Result
of Butterworth
highpass filtering.
(¢) Result of hieh-
frequency
emphasis filtering,
(d) Result of
performing
histogram
equalization on
(C). (Original
image courtesy
Dr.'Thomas

R. Giest, Division
of Anatomical
Sciences.
University of
Michigan Medical
School.)



Homomorphic filtering

 Homomorphism:
* Image formation model
— 1(X,y)=1(x,y) r(x,y)

VAN

illumination: reflectance:

Slow spatial variations ~ vary abruptly, particularly
at the junctions of dissimilar

objects
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IIIuminati7n source
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Homomorphic filtering

 Product term

I{F (%, y) )= 3 YIrx y)= 34x y)33s{r(x y)}
* Log of product

—z(X,yY)=In f(x,y)=In i(x,y)+ In r(x,y)

Separation of sighal source:

3{z(x, y)}=3{In f(x,y)}
= 3{In i(x, y)}+ 3{In r(x, )}
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ﬂvlqmomorphic filtering approach

flx.y) @]ZDE}:} Hu.v) (DFT)™ exp g(x.y)

Ini(x,y)

nr(x,y)
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* |llumination -> low frequency
* Reflection -> high frequency

Hu, v)
4

sharpening

YHE — — — — — —

r Radius from

_ the origin
D(u. v) 65




?H.omomophic filtering: example

original Homomorphic filtering




1-I> 1-D
rowW column
transforms transforms

FIGURE 4.35
Computation of
the 2-D Founer
transform as a
series of 1-D
transforms.
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v’ The 2-D DFT Calculation with two 1-D DFT:

1'&-1)‘-1

F(u,v)= ZZf('{ VIWEW

x—EI"L 0

]‘ - Fla s
— F(I_._. V) — E Zf(’f..}’)w}g

I)F(H,_V):N( : EF(ﬁc v)FI”“J

x—ﬂ

(0, ) (N 1) (0, ) (N 1) (0, 0) (N —1)
- - | e
Row transforms Column
Multuplication by N transforms
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FIGURE 4.36 Left: +— : - i — : : : .~ i
convolution of neooEm v A
two discrete him) him)
functions. Right: t }
convolution of the
same functions, , ;
taking into
account the N R - -
iﬂ]p]jﬂd il LT i [} Ll din
periodicity of the hi—m) h{—m)
DFT. Note in (j) $ ]
how data from
adjacent periods )
corrupt the result :
of convolution. s - 5 . -
i :III i i [ 1] BN
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Fourier transform 69
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W =B ]

FIGURE 4.37
Result of
performing
convolution with
extended
functions.
Compare

Figs. 4.37(e) and
4.36(e).
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FIGURE 4.39 Padded lowpass filter is the spatial domain (only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its
original size since there is little valuable information past the image boundaries.
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FIGURE 4.41

i a) Image.

ib) Template.

() and

(d) Padded
images.

(2} Correlation
function displayed
as an image.

{1y Horizontal
profile line
through the
highest value in
i2).showing the
point at which the
best match ook
place.

Highest correlation
value

Ciray-level
profile ling
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FIGURE 4.42
Computational
advantage of the
FFT over a direct
implementation
of the 1-D DFT,
Note that the
advantage
increases rapidly
as a function of n.
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