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Chapter 4
Image Enhancement in the

Frequency Domain
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4.1 Background

• 1807, French math. Fourier

– Any function that periodically repeats itself can be 

expressed as the sum of sines and/or cosines of 

different frequencies, each multiplied by a different 

coefficient (Fourier series)

• 2-D transform can be applied to image 

enhancement, restoration, encoding, and 

description.

• Fourier transform (FT)

– Fourier’s idea – fig. 4.1.
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4.2 Introduction to the Fourier transform
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4.2 Introduction to the Fourier transform

Example 4.1. Fourier spectra of two simple 1-D functions. (Fig. 4.2)
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DFT example for real signal

f(x)

|F(u)| angle(F(u))
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4.2 Introduction to the Fourier transform
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4.2 Introduction to the Fourier transform

• The discrete Fourier transform (DFT)
– For 1-D transform: Let the sequence{f(0),f(1),...,f(N-1)} be n 

real points, the discrete Fourier transform pair is given by
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4.2 Introduction to the Fourier transform
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4.2 Introduction to the Fourier transform

– For 2-D transform: in the two-variable case the 

discrete Fourier transform pair is
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4.2 Introduction to the Fourier transform

Example 4.2. Centered spectrum of a simple 2-D functions. (Fig. 4.3)

Example 4.3. Fourier spectrum (Fig. 4.4)
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4.2 Introduction to the Fourier transform
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Filtering in the Frequency Domain
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Connection between spatial and 

frequency filters

• Convolution theorem

),(),(),(),( vuHvuFyxhyxf 
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mask coefficients

underlying neighborhood

X (product) output
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Convolution theorem

),(),(),(),( vuHvuFyxhyxf 
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Convolution Theorem
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4.3 Smoothing Frequency-Domain Filters

• Ideal lowpass filters (ILPF)

– Fig. 4.10

– Example 4.4. Image power as a function of distance 

from the origin of the DFT. (Fig. 4.11) (Fig. 4.12)
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Ideal lowpass filters
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Ideal lowpass filters
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Effects of ideal low-pass filtering

• Blurring and ringing

ILPF: Freq.

F-1

blurring

ringing

ILPF: 
spatial
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Effects of ideal low-pass filtering (cont.)

spatial

impulse

ILPF

spatial
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4.3 Smoothing Frequency-Domain Filters

• Butterworth lowpass filters (BLPF)

– Example 4.5. (Fig. 4.15) (Fig. 4.16)

• Gussian lowpass filters (GLPFs)

– Example 4.6. (Fig. 4.17) (Fig. 4.18) (Fig. 4.19)

• Additional Examples of Lowpass Filtering

– Fig. 4.20

– Fig. 4.21
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Gussian Lowpass filters
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Character recognition
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Reducing the effect of scan lines
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4.4 Sharpening Frequency-Domain Filters

• Highpass Filtering

• Fig. 4.22

• Fig. 4.23

– Ideal highpass filters

• Fig. 4.24 

– Butterworth highpass filters

• Fig. 4.25 

– Gaussian highpass filters

• Fig. 4.26
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Ideal highpass filters
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Butterworth highpass filters
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Gaussian highpass filters
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4.4 Sharpening Frequency-Domain Filters

• The Laplacian in the frequency domain

– Fig. 4.27

– Example 4.7: Laplacian (Fig. 4.28)

• Unsharp masking, High-boost filtering, and High-

frequency emphasis filtering

– Example 4.8: (Fig. 4.29)

– Example 4.9: (Fig. 4.30)
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Laplacian frequency-domain filters

• Spatial-domain Laplacian

• Fourier transform
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Laplacian frequency-domain 

filters
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The Laplacian filter in the frequency domain is

H(u,v) = -(u2+v2)
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0

frequency

spatial
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original
Laplacian

Scaled
Laplacian

original+
Laplacian
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High-boost filtering
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High-frequency emphasis filtering
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Homomorphic filtering

• Homomorphism: 

• Image formation model

– f(x,y)=i(x,y) r(x,y)

illumination: reflectance:

Slow spatial variations vary abruptly, particularly
at the junctions of dissimilar
objects
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Image Formation Model

Illumination source

scene

reflection
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Homomorphic filtering

• Product term

• Log of product

– z(x,y)=ln f(x,y)=ln i(x,y)+ ln r(x,y)
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Separation of signal source: 
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Homomorphic filtering approach

ln i(x,y)

ln r(x,y)
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How to identify the 

illumination and reflection

• Illumination -> low frequency

• Reflection -> high frequency

Radius from
the origin

sharpening
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Homomophic filtering: example

original Homomorphic filtering
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